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Minimum spanning tree (MST)

Input: A connected, undirected graph
G = (V ,E ) with positive edge
weights.

Output: A subset of edges E ′ ⊆ E of
minimum total weight such that
the graph (V ,E ′) is connected.

Remark
The set E ′ always forms a tree.
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Properties of Trees

A tree is an undirected graph that is
connected and acyclic.

A tree on n vertices has n − 1 edges.
Any connected undirected graph
G (V ,E ) with |E | = |V | − 1 is a tree.
An undirected graph is a tree iff there is
a unique path between any pair of its
vertices.
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This lesson
Two efficient greedy algorithms for the
minimum spanning tree problem.



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61



Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61



Outline

1 Building a Network

2 Greedy Algorithms

3 Cut Property

4 Kruskal’s Algorithm

5 Prim’s Algorithm



Cut property
Let X ⊆ E be a part of a MST of G (V ,E ), S ⊆ V
be such that no edge of X crosses between S and
V − S , and e ∈ E be a lightest edge across this
partition. Then X + {e} is a part of some MST.
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graph G

subset X ⊆ E of some MST Tpartition of V into S and V − S

e

lightest edge e between S and V − S
we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ Tconsider the tree T
adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T ) since w(e) ≤ w(e ′)
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Kruskal’s Algorithm
Algorithm: repeatedly add to X the next
lightest edge e that doesn’t produce a
cycle
At any point of time, the set X is a
forest, that is, a collection of trees
The next edge e connects two different
trees—say, T1 and T2

The edge e is the lightest between T1

and V − T1, hence adding e is safe



Implementation Details

use disjoint sets data structure
initially, each vertex lies in a separate set
each set is the set of vertices of a
connected component
to check whether the current edge
{u, v} produces a cycle, we check
whether u and v belong to the same set
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Kruskal(G )

for all u ∈ V :
MakeSet(v)

X ← empty set
sort the edges E by weight
for all {u, v} ∈ E in non-decreasing

weight order:
if Find(u) ̸= Find(v):

add {u, v} to X

Union(u, v)
return X



Running Time
Sorting edges:

O(|E | log |E |) = O(|E | log |V |2) =
O(2|E | log |V |) = O(|E | log |V |)

Processing edges:

2|E | · T (Find) + |V | · T (Union) =
O((|E |+|V |) log |V |) = O(|E | log |V |)

Total running time: O(|E | log |V |)
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Prim’s Algorithm

X is always a subtree, grows by one
edge at each iteration
we add a lightest edge between a vertex
of the tree and a vertex not in the tree
very similar to Dijkstra’s algorithm
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Prim’s Algorithm
Prim(G )
for all u ∈ V :

cost[u]←∞, parent[u]← nil
pick any initial vertex u0
cost[u0]← 0
PrioQ ← MakeQueue(V ) {priority is cost}
while PrioQ is not empty:

v ← ExtractMin(PrioQ)
for all {v , z} ∈ E:

if z ∈ PrioQ and cost[z ] > w(v , z):
cost[z ]← w(v , z), parent[z ]← v
ChangePriority(PrioQ, z , cost[z ])



Running Time

the running time is

|V |·T (ExtractMin)+|E |·T (ChangePriority)

for array-based implementation, the running
time is O(|V |2)

for binary heap-based implementation, the
running time is
O((|V |+ |E |) log |V |) = O(|E | log |V |)
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Summary

Kruskal: repeatedly add the next lightest
edge if this doesn’t produce a cycle;
use disjoint sets to check whether
the current edge joins two vertices
from different components

Prim: repeatedly attach a new vertex to
the current tree by a lightest edge;
use priority queue to quickly find
the next lightest edge
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