
Spanning Trees:
Efficient Algorithms

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Graph Algorithms
Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

1 Building a Network

2 Greedy Algorithms

3 Cut Property

4 Kruskal’s Algorithm

5 Prim’s Algorithm

Connecting Computers by Wires

Connecting Computers by Wires

$2

$2

$5

$4

$1

$2

$5

$6$3

Connecting Computers by Wires

$2

$2

$5

$4

$1

$2

$5

$6$3

Connecting Computers by Wires

$2

$2

$5

$4

$1

$2

$5

$6$3

Building Roads

Building Roads

Minimum spanning tree (MST)

Input: A connected, undirected graph
G = (V ,E) with positive edge
weights.

Output: A subset of edges E ′ ⊆ E of
minimum total weight such that
the graph (V ,E ′) is connected.

Remark
The set E ′ always forms a tree.

Minimum spanning tree (MST)

Input: A connected, undirected graph
G = (V ,E) with positive edge
weights.

Output: A subset of edges E ′ ⊆ E of
minimum total weight such that
the graph (V ,E ′) is connected.

Remark
The set E ′ always forms a tree.

Properties of Trees

A tree is an undirected graph that is
connected and acyclic.

A tree on n vertices has n − 1 edges.
Any connected undirected graph
G (V ,E) with |E | = |V | − 1 is a tree.
An undirected graph is a tree iff there is
a unique path between any pair of its
vertices.

Properties of Trees

A tree is an undirected graph that is
connected and acyclic.
A tree on n vertices has n − 1 edges.

Any connected undirected graph
G (V ,E) with |E | = |V | − 1 is a tree.
An undirected graph is a tree iff there is
a unique path between any pair of its
vertices.

Properties of Trees

A tree is an undirected graph that is
connected and acyclic.
A tree on n vertices has n − 1 edges.
Any connected undirected graph
G (V ,E) with |E | = |V | − 1 is a tree.

An undirected graph is a tree iff there is
a unique path between any pair of its
vertices.

Properties of Trees

A tree is an undirected graph that is
connected and acyclic.
A tree on n vertices has n − 1 edges.
Any connected undirected graph
G (V ,E) with |E | = |V | − 1 is a tree.
An undirected graph is a tree iff there is
a unique path between any pair of its
vertices.

Outline

1 Building a Network

2 Greedy Algorithms

3 Cut Property

4 Kruskal’s Algorithm

5 Prim’s Algorithm

This lesson
Two efficient greedy algorithms for the
minimum spanning tree problem.

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61

Kruskal’s algorithm

repeatedly add the
next lightest edge if
this doesn’t produce a
cycle

2

4

1

93

8

5 61

Prim’s algorithm

repeatedly attach a
new vertex to the
current tree by a
lightest edge

2

4

1

93

8

5 61

Outline

1 Building a Network

2 Greedy Algorithms

3 Cut Property

4 Kruskal’s Algorithm

5 Prim’s Algorithm

Cut property
Let X ⊆ E be a part of a MST of G (V ,E), S ⊆ V
be such that no edge of X crosses between S and
V − S , and e ∈ E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

Cut property
Let X ⊆ E be a part of a MST of G (V ,E), S ⊆ V
be such that no edge of X crosses between S and
V − S , and e ∈ E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

graph G

Cut property
Let X ⊆ E be a part of a MST of G (V ,E), S ⊆ V
be such that no edge of X crosses between S and
V − S , and e ∈ E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

subset X ⊆ E of some MST

Cut property
Let X ⊆ E be a part of a MST of G (V ,E), S ⊆ V
be such that no edge of X crosses between S and
V − S , and e ∈ E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

partition of V into S and V − S

Cut property
Let X ⊆ E be a part of a MST of G (V ,E), S ⊆ V
be such that no edge of X crosses between S and
V − S , and e ∈ E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

e

lightest edge e between S and V − S

Cut property
Let X ⊆ E be a part of a MST of G (V ,E), S ⊆ V
be such that no edge of X crosses between S and
V − S , and e ∈ E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

e

cut property states that X + {e} is also a part of
some MST

Cut property
Let X ⊆ E be a part of a MST of G (V ,E), S ⊆ V
be such that no edge of X crosses between S and
V − S , and e ∈ E be a lightest edge across this
partition. Then X + {e} is a part of some MST.

cut property states that X + {e} is also a part of
some MST

Proof

graph G

subset X ⊆ E of some MST Tpartition of V into S and V − S

e

lightest edge e between S and V − S
we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ Tconsider the tree T
adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Proof

graph G

subset X ⊆ E of some MST T

partition of V into S and V − S

e

lightest edge e between S and V − S
we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ Tconsider the tree T
adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Proof

graph Gsubset X ⊆ E of some MST T

partition of V into S and V − S

e

lightest edge e between S and V − S
we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ Tconsider the tree T
adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Proof

graph Gsubset X ⊆ E of some MST Tpartition of V into S and V − S

e

lightest edge e between S and V − S

we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ Tconsider the tree T
adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Proof

graph Gsubset X ⊆ E of some MST Tpartition of V into S and V − S

e

lightest edge e between S and V − S

we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ Tconsider the tree T
adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Proof

graph Gsubset X ⊆ E of some MST Tpartition of V into S and V − S

e

lightest edge e between S and V − S
we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ T

consider the tree T
adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Proof

graph Gsubset X ⊆ E of some MST Tpartition of V into S and V − S

e

lightest edge e between S and V − S
we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ T

consider the tree T

adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Proof

graph Gsubset X ⊆ E of some MST Tpartition of V into S and V − S

e

lightest edge e between S and V − S
we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ Tconsider the tree T

adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Proof

graph Gsubset X ⊆ E of some MST Tpartition of V into S and V − S

e

lightest edge e between S and V − S
we know that X is a part of some MST T and
need to show that X + {e} is also a part of a
(possibly different) MST

if e ∈ T then there is nothing to prove; so
assume that e ̸∈ Tconsider the tree T
adding e to T creates a cycle; let e ′ be an
edge of this cycle that crosses S and V − S

e ′

then T ′ = T − {e ′} + {e} is an MST
containing X + {e}: it is a tree, and
w(T ′) ≤ w(T) since w(e) ≤ w(e ′)

Outline

1 Building a Network

2 Greedy Algorithms

3 Cut Property

4 Kruskal’s Algorithm

5 Prim’s Algorithm

Kruskal’s Algorithm
Algorithm: repeatedly add to X the next
lightest edge e that doesn’t produce a
cycle
At any point of time, the set X is a
forest, that is, a collection of trees
The next edge e connects two different
trees—say, T1 and T2

The edge e is the lightest between T1

and V − T1, hence adding e is safe

Implementation Details

use disjoint sets data structure
initially, each vertex lies in a separate set
each set is the set of vertices of a
connected component
to check whether the current edge
{u, v} produces a cycle, we check
whether u and v belong to the same set

Example

2

4

1

93

8

5 61

Kruskal(G)

for all u ∈ V :
MakeSet(v)

X ← empty set
sort the edges E by weight
for all {u, v} ∈ E in non-decreasing

weight order:
if Find(u) ̸= Find(v):

add {u, v} to X

Union(u, v)
return X

Running Time
Sorting edges:

O(|E | log |E |) = O(|E | log |V |2) =
O(2|E | log |V |) = O(|E | log |V |)

Processing edges:

2|E | · T (Find) + |V | · T (Union) =
O((|E |+|V |) log |V |) = O(|E | log |V |)

Total running time: O(|E | log |V |)

Outline

1 Building a Network

2 Greedy Algorithms

3 Cut Property

4 Kruskal’s Algorithm

5 Prim’s Algorithm

Prim’s Algorithm

X is always a subtree, grows by one
edge at each iteration
we add a lightest edge between a vertex
of the tree and a vertex not in the tree
very similar to Dijkstra’s algorithm

Example

2

4

1

93

8

5 61

Prim’s Algorithm
Prim(G)
for all u ∈ V :

cost[u]←∞, parent[u]← nil
pick any initial vertex u0
cost[u0]← 0
PrioQ ← MakeQueue(V) {priority is cost}
while PrioQ is not empty:

v ← ExtractMin(PrioQ)
for all {v , z} ∈ E:

if z ∈ PrioQ and cost[z] > w(v , z):
cost[z]← w(v , z), parent[z]← v
ChangePriority(PrioQ, z , cost[z])

Running Time

the running time is

|V |·T (ExtractMin)+|E |·T (ChangePriority)

for array-based implementation, the running
time is O(|V |2)

for binary heap-based implementation, the
running time is
O((|V |+ |E |) log |V |) = O(|E | log |V |)

Running Time

the running time is

|V |·T (ExtractMin)+|E |·T (ChangePriority)

for array-based implementation, the running
time is O(|V |2)

for binary heap-based implementation, the
running time is
O((|V |+ |E |) log |V |) = O(|E | log |V |)

Running Time

the running time is

|V |·T (ExtractMin)+|E |·T (ChangePriority)

for array-based implementation, the running
time is O(|V |2)

for binary heap-based implementation, the
running time is
O((|V |+ |E |) log |V |) = O(|E | log |V |)

Summary

Kruskal: repeatedly add the next lightest
edge if this doesn’t produce a cycle;
use disjoint sets to check whether
the current edge joins two vertices
from different components

Prim: repeatedly attach a new vertex to
the current tree by a lightest edge;
use priority queue to quickly find
the next lightest edge

	Building a Network
	Greedy Algorithms
	Cut Property
	Kruskal's Algorithm
	Prim's Algorithm

